Colouring finite products
نویسندگان
چکیده
We consider finite colourings of products $$X_1\times X_2\times \cdot \times X_n$$ infinite sets and determine what is the minimal number colours a subproduct $$Y_1\times Y_2\times Y_n$$ subsets could achieve.
منابع مشابه
Adaptable Colouring of Graph Products
A colouring of the vertices of a graph (or hypergraph) G is adapted to a given colouring of the edges of G if no edge has the same colour as both (or all) its vertices. The adaptable chromatic number of G is the smallest integer k such that each edge-colouring of G by colours 1, 2, . . . , k admits an adapted vertex-colouring of G by the same colours 1, 2, . . . , k. (The adaptable chromatic nu...
متن کاملOriented colouring of some graph products
We obtain some improved upper and lower bounds on the oriented chromatic number for different classes of products of graphs.
متن کاملCOMPUTING THE PRODUCTS OF CONJUGACY CLASSES FOR SPECIFIC FINITE GROUPS
Suppose $G$ is a finite group, $A$ and $B$ are conjugacy classes of $G$ and $eta(AB)$ denotes the number of conjugacy classes contained in $AB$. The set of all $eta(AB)$ such that $A, B$ run over conjugacy classes of $G$ is denoted by $eta(G)$.The aim of this paper is to compute $eta(G)$, $G in { D_{2n}, T_{4n}, U_{6n}, V_{8n}, SD_{8n}}$ or $G$ is a decomposable group of order $2pq$, a group of...
متن کاملBicrossed Products for Finite Groups
We investigate one question regarding bicrossed products of finite groups which we believe has the potential of being approachable for other classes of algebraic objects (algebras, Hopf algebras). The problem is to classify the groups that can be written as bicrossed products between groups of fixed isomorphism types. The groups obtained as bicrossed products of two finite cyclic groups, one be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Periodica Mathematica Hungarica
سال: 2021
ISSN: ['0031-5303', '1588-2829']
DOI: https://doi.org/10.1007/s10998-021-00389-8